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Abstract

We analyze the supersymmetric (SUSY) QCD contribution to the h0b�b

coupling at one loop in the Minimal Supersymmetric Model (MSSM) in the

decoupling limit. Analytic expressions in the large SUSY mass region are

derived and the decoupling behavior of the corrections is examined in various

limiting cases, where some or all of the SUSY mass parameters become large.

We show that in the decoupling limit of large SUSY mass parameters and

large CP-odd Higgs mass, the h0b�b coupling approaches its Standard Model

value at one loop. However, the onset of decoupling is delayed when tan �

is large. In addition, the one-loop SUSY-QCD corrections decouple if the

masses of either the bottom squarks or the gluino are separately taken large;

although the approach to decoupling is signi�cantly slower in the latter case.

�
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1 Introduction

Once a light CP-even Higgs boson is discovered, it will be crucial to measure

as many of its couplings as we can with the highest accuracy possible. By

measuring the Higgs couplings to gauge bosons, one can learn whether the

Higgs boson that has been discovered is the only Higgs boson responsible

for electroweak symmetry breaking. Moreover, the Higgs couplings to vector

bosons are sensitive to the possible existence of non-doublet isospin structure

in the Higgs sector. By measuring the Higgs couplings to fermion pairs, one

can learn whether the Higgs boson is responsible for fermion mass genera-

tion. Knowledge of the trilinear and quartic Higgs self-couplings, although

extremely di�cult to obtain, would allow one to reconstruct the Higgs po-

tential and directly test the mechanism of electroweak symmetry breaking.

Finally, if the couplings can be measured at the level of the radiative correc-

tions, one could then derive signi�cant constraints on new physics beyond the

reach of the present accelerators. A detailed study of radiative corrections

to the Higgs couplings would be especially important if a light Higgs boson

were discovered in the mass range predicted by the minimal supersymmetric

extension of the Standard Model (MSSM), but supersymmetric (SUSY) par-

ticles were not found. In this case, the precise experimental determination of

Higgs couplings could provide indirect information about the preferred region

of SUSY parameter space. For example, one could predict (in the context

of the MSSM) whether the data favored a SUSY spectrum below the 1 TeV

energy scale.

It is well known that the tree-level couplings of the lightest MSSM Higgs

boson (h0) to fermion pairs and gauge bosons tend to their Standard Model

(SM) values in the decoupling limit, MA � MZ [1], where MA is the mass

of the CP-odd neutral Higgs boson (A0) of the MSSM. As a consequence of

this decoupling, distinguishing the lightest MSSM Higgs boson in the large

MA limit from the Higgs boson of the Standard Model (SM) will be very

di�cult.

Formally, the decoupling of all SUSY particles (including the radiative

corrections) implies that in the e�ective low-energy theory, all observables

tend to their SM values in the limit of large SUSY masses and large MA. It

has been shown that all of the SUSY particles in the MSSM, including the

heavy Higgs bosons H0, A0 and H�, decouple at one-loop order from the low-

energy electroweak gauge boson physics [2]. In particular, the contributions

of the SUSY particles to low-energy processes either fall as inverse powers

of the SUSY mass parameters or can be absorbed into counterterms for the

tree-level couplings of the low-energy theory [3]. As a result, the radiative

corrections involving SUSY particles go to zero in the asymptotic large SUSY

mass limit. Our aim is to determine the nature of the decoupling limit at

one-loop for the couplings of h0 to SM particles.

In this paper, we focus on the h0 coupling to b�b. This coupling determines

the partial width of h0 ! b�b, which is by far the dominant decay mode of
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h0 in most of the MSSM parameter space. Because this decay is dominant,

accurate knowledge of the h0b�b coupling is very important for Higgs boson

searches. At LEP and the Tevatron, the primary Higgs search channel is

h0 ! b�b. The experimental reach of Higgs boson searches at the upcoming

Tevatron Run 2 depends critically on the h0 ! b�b branching ratio [4]. In

contrast, the Higgs boson searches at LEP do not depend as critically on the

h0 ! b�b decay. At LEP, there is su�cient cross-section to detect the Higgs

boson in multiple channels. Moreover, even without observing the Higgs

decay products, the Higgs boson mass can be reconstructed by detecting the

recoiling Z boson in e+e� ! Zh0. At the CERN LHC, the primary Higgs

search channel in the mass region below 130 GeV is the rare decay h0 ! .

The Higgs event rate in this channel is a�ected strongly if the total width

of h0 is modi�ed due to corrections to the dominant b�b decay mode [5]. The

same holds true for other search channels at the LHC such as h0 ! �+�� [6].

In this paper we study the MSSM radiative corrections to the h0b�b cou-

pling at one loop, to leading order in �s, and we analyze their behavior in the

decoupling limit. These corrections are due to the SUSY-QCD (SQCD) sec-

tor and arise from gluino and bottom-squark (sbottom) exchange. Because

of the dependence on the strong coupling constant, these are expected to be

the most signi�cant one-loop MSSM contributions over much of the MSSM

parameter space. Potentially signi�cant contributions can also arise from

the SUSY-electroweak sector (the most signi�cant of which are proportional

to the Higgs-top quark Yukawa coupling); we will address these corrections

elsewhere and do not consider them here.

The SQCD corrections to the h0b�b coupling were �rst calculated in a

diagrammatic approach in ref. [7], which also contains results for the SUSY-

electroweak corrections. Similar results may be found in ref. [8]. The SQCD

corrections were also calculated in an e�ective Lagrangian approach in ref. [4],

using the SUSY contributions to the b{quark self energy obtained in refs. [9,

10] and neglecting terms suppressed by inverse powers of SUSY masses.

The radiatively corrected h0b�b coupling depends on the CP-even Higgs

mixing angle �. At tree-level, this mixing angle is determined by �xing tan �

and MA. At one-loop order, there are no O(�s) corrections to this mixing

angle. As a result, working to leading order in �s, we may employ tree-

level relations for � in our computation of the h0b�b coupling. This procedure

is no longer adequate once one-loop SUSY-electroweak e�ects are included.

In the latter case, the one-loop radiative corrections to � must be taken

into account, as described in refs. [4, 5, 11]. These papers show that the

interplay between the radiative corrections to the mixing angle and to the

h0b�b coupling can be very important for Higgs collider phenomenology, as

follows. When radiative corrections to the mixing angle � are included, it

becomes possible to tune this angle to zero independent of the value of tan �

by varying the SUSY parameters. At � = 0, the tree-level couplings of

h0 to b�b and �+�� vanish, as do the ordinary QCD corrections [12] to the

h0b�b coupling. However, because the SQCD corrections to the h0b�b coupling
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include contributions from diagrams involving the h0 coupling to sbottoms,

they remain nonzero at � = 0. As a result, the h0�+�� coupling goes to

zero at a di�erent point in SUSY parameter space than the h0b�b coupling

does [5, 11]. We will come back to these issues and study the approach to

decoupling of the SUSY-electroweak corrections in a later paper.

In some regions of the MSSM parameter space, the SQCD corrections to

the h0b�b coupling become so large that it is important to take into account

higher-order corrections. This has been carried out in refs. [13, 14] by re-

summing the leading tan � contributions to all orders of perturbation theory

using an e�ective Lagrangian approach. This resummation is not important

in our present work because we are interested in the decoupling limit in which

the one-loop corrections to the h0b�b coupling are small.

In this paper we analyze the full diagrammatic formulae for the on-shell

one-loop SQCD corrections to the h0b�b coupling. We perform expansions in

inverse powers of SUSY masses in order to examine the decoupling behavior

when the SUSY masses are large compared to MZ. The SQCD corrections

depend on a number of di�erent SUSY mass parameters, and the relative

sizes of these masses a�ect the manifestation of the decoupling. To remain

as model-independent as possible, we make no assumptions about relations

among the SUSY parameters that may arise from grand uni�cation or speci�c

SUSY-breaking scenarios. We consider the soft-SUSY-breaking parameters

and the � parameter to be independent parameters whose magnitudes are

all of order 1 TeV.

In this paper, we demonstrate that in the limit of large MA (in this

limit one also has MH0;MH� � MZ) and large sbottom and gluino masses

(M~bi
;M~g � MZ), the SM expression for the h0b�b one-loop coupling is re-

covered. That is, the SQCD corrections to the h0b�b coupling decouple in

the limit of large SUSY masses and large MA. In particular, we examine

the case of large tan�, for which the SQCD corrections are enhanced. This

enhancement can delay the onset of decoupling and give rise to a signi�cant

one-loop correction, even for moderate to large values of the SUSY masses.

This paper is organized as follows. In Section 2 we de�ne our notation

and briey review the Higgs and sbottom sectors of the MSSM. In Section 3

we give the exact one loop formula for the SQCD corrections to the h0b�b cou-

pling. In Section 4 we derive analytic expressions for the SQCD corrections

in the limit of large SUSY masses. We analyze the decoupling of the SQCD

corrections for various hierarchies of mass parameters, and numerically com-

pare the analytic approximations to the exact one-loop result. In Section 5

we summarize our conclusions. Finally, the Appendix contains expansions of

the one-loop integrals used in our calculations.
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2 Higgs and sbottom masses in the MSSM

In the MSSM, the parameters of the Higgs sector are constrained at tree-level

in such a way that the Higgs masses and mixing angles depend on only two

unknown parameters. These are commonly chosen to be the mass of the CP-

odd neutral Higgs boson A0 and the ratio of the vacuum expectation values

(vevs) of the two Higgs doublets, tan � = v2=v1. (For a review of the MSSM

Higgs sector, see [15].) In terms of these parameters, the mass of the charged

Higgs boson H� at tree level is M2
H�

= M2
A
+M2

W
, and the masses of the

CP-even neutral Higgs bosons h0 and H0 are obtained by diagonalizing the

tree-level mass-squared matrix,

M
2 =

 
M2

A
sin2 � +M2

Z
cos2 � �(M2

A
+M2

Z
) sin � cos�

�(M2
A
+M2

Z
) sin� cos � M2

A
cos2 � +M2

Z
sin2 �

!
: (2.1)

The eigenvalues of this matrix are,

M2
H0;h0

=
1

2

�
M2

A
+M2

Z
�

q
(M2

A
+M2

Z
)
2
� 4M2

A
M2

Z
cos2 2�

�
; (2.2)

with Mh0 < MH0. At tree-level, Mh0 � MZ j cos 2�j; this bound is saturated

at large MA. We choose a convention where the vevs are positive so that

0 < � < �=2. The mixing angle that diagonalizes M2 is given at tree-level

by

tan 2� = tan 2�
M2

A
+M2

Z

M2
A
�M2

Z

: (2.3)

In the conventions employed here, ��=2 < � < 0 (see ref. [16] for further

details). From the above results it is easy to obtain:

cos2(� � �) =
M2

h0
(M2

Z
�M2

h0
)

M2
A
(M2

H
0 �M2

h
0)
: (2.4)

In the limit of MA � MZ, the expressions for the Higgs masses and mixing

angle simplify and one �nds

M2
h0
' M2

Z
cos2 2� ;

M2
H0 ' M2

A
+M2

Z
sin2 2� ;

cos2(� � �) '
M4

Z
sin2 4�

4M4
A

: (2.5)

Two consequences are immediately apparent. First, MA 'MH0 'MH�, up

to corrections of O(M2
Z
=MA). Second, cos(� � �) = 0 up to corrections of

O(M2
Z
=M2

A
). This limit is known as the decoupling limit because when MA

is large, one can de�ne an e�ective low-energy theory below the scale of MA

in which the e�ective Higgs sector consists only of one light CP-even Higgs
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boson, h0, whose couplings to Standard Model particles are indistinguishable

from those of the SM Higgs boson [1]. From eq. 2.5, one can easily derive:

cot� = � tan � �
2M2

Z

M2
A

tan � cos 2� +O

 
M4

Z

M4
A

!
: (2.6)

When radiative corrections to the CP-even Higgs mass-squared matrix

are taken into account, the upper bound on Mh
0 increases substantially to

Mh
0 <� 135 GeV (assuming all supersymmetric particles are no heavier than

about 1 TeV), and corrections to � become substantial for low MA. These

corrections are well known [10, 17{22] and the leading contributions have

been computed up to two-loop order. In this paper we consider only the

contributions to the h0b�b coupling of order �s at one loop. Because the O(�s)

contributions to the CP-even Higgs mass-squared matrix only �rst arise at

the two-loop level, the radiative corrections to this matrix are irrelevant to

our present work. (In contrast, they do contribute to the one-loop SUSY-

electroweak corrections to the h0b�b coupling.)

From direct searches at LEP the MSSM h0 and A0 masses are constrained

to be Mh0 > 88:3 GeV and MA > 88:4 GeV [23]. For a range of values of

tan � close to one, the theoretical upper bound on Mh0 is lower than the

experimental lower bound, so the corresponding region of tan� can be ruled

out. Because of the radiative corrections, the variation of the upper bound

depends primarily on the precise value of the top quark mass and the mixing

in the stop sector. For the conservative choice of mt < 179:4 GeV and mixing

in the stop sector that maximizes the upper bound on Mh0 , values of tan �

between 0.8 and 1.5 are excluded [23].

We now discuss the parameters of the sbottom sector. The tree-level

sbottom squared-mass matrix is:

M2
~b
=

 
M2

L
mbXb

mbXb M2
R

!
; (2.7)

where we use the notation,

Xb = Ab � � tan � ;

M2
L
= M2

~Q
+m2

b
+M2

Z
(Ib3 �Qbs

2
W
) cos 2� ;

M2
R
= M2

~D
+m2

b
+M2

Z
Qbs

2
W
cos 2� : (2.8)

Here Ib3 = �1=2 and Qb = �1=3 are the isospin and electric charge of the

b-quark, respectively and sW � sin �W . The parameters M ~Q and M ~D are the

soft-SUSY-breaking masses for the third-generation SU(2) squark doublet
~Q = (etL; ebL) and the singlet ~D = eb�

R
, respectively. Ab is a soft-SUSY-breaking

trilinear coupling and � is the bilinear coupling of the two Higgs doublet

super�elds. The sbottom mass eigenstates are

~b1 = cos �~b
~bL + sin �~b

~bR ; ~b2 = � sin �~b
~bL + cos �~b

~bR ; (2.9)
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where ��=4 � �~b � �=4 is de�ned so that ~b1 (~b2) is predominantly ~bL (~bR).

The sbottom mass eigenvalues are then given by

M2
~b1;2

=
1

2

�
M2

L
+M2

R
� �LR

q
(M2

L
�M2

R
)2 + 4m2

b
X2
b

�
; (2.10)

where1

�
LR
� sgn(M2

L
�M2

R
) ; (2.11)

and the mixing angle �~b is given by

cos 2�~b =
M2

L
�M2

R

M2
~b1
�M2

~b2

;

sin 2�~b =
2mbXb

M2
~b1
�M2

~b2

: (2.12)

Note that in our conventions, M~b1
> M~b2

if �
LR

> 0, whereas the order of

the sbottom masses switches if �
LR

< 0.

From direct searches at the Tevatron [24], the sbottoms must be heavier

than about 140 GeV, assuming that the mass of the lightest neutralino ~�01
is less than half the mass of the lighter sbottom. For heavier neutralinos,

the Tevatron searches lose e�ciency. In this region the direct searches at

LEP [25] place a lower bound on the sbottom masses of about 85 GeV. The

LEP bounds are valid only for ~b � ~�01 mass splittings larger than about 5

GeV, so that the decay mode ~b! b~�01 is kinematically accessible.

The limits on the gluino mass M~g are more model-dependent. If one

assumes relations between the gaugino masses such that they unify at the

GUT scale, then M~g is constrained from direct searches at the Tevatron to

be greater than 173 GeV, independent of the squark masses [26].

3 SQCD corrections to h
0
! b�b

The h0b�b coupling is given at one-loop level to order �s by

�ghbb = ghbb + �g
QCD

hbb
+ �g

SQCD

hbb
� ghbb (1 + �QCD +�SQCD) ; (3.1)

where �ghbb is the one-loop coupling, ghbb is the tree-level coupling, �g
QCD

hbb
is

the radiative correction from pure QCD [12], and �g
SQCD

hbb
is the one-loop

SQCD contribution.

The tree-level h0b�b coupling is given by

ghbb =
gmb sin�

2MW cos �
: (3.2)

1
IfML =MR, then �LR is not well-de�ned. In the present context, a useful convention

is to set �
LR

= �
X

[where �
X
� sgn(Xb)] if ML = MR. Nevertheless, one can check

that our �nal expressions for the radiative corrections in Section 4 are independent of this

choice.
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�
~bi

~bj

~gh0

b

b

�h0 X

b

b

�
~g

~bi

h0

b

b

�~g

~bi

h0

b

b

Figure 1: Feynman diagrams for the SQCD corrections to the h0b�b coupling.

The vertex marked with the X refers to the one-loop h0b�b counterterm.

Note that in the limit of large MA, sin� ! � cos � and ghbb tends to the

SM coupling, gSM
hbb

= �gmb=(2MW ). The one-loop corrections to the h0b�b

coupling modify the h0 ! b�b decay width as follows, keeping only correction

terms of O(�s):

��(h0! b�b) = �(h0 ! b�b)(1 + 2�QCD + 2�SQCD) ; (3.3)

where �� is the one-loop partial width and � is the tree-level partial width.

The SQCD contribution to the h0b�b coupling comes from diagrams in-

volving the exchange of virtual gluinos (~g) and sbottoms (~bi), as shown in

�g. 1. We have

�g
SQCD

hbb
= (�ghbb)

SQCD

3
+ (�ghbb)

SQCD

2
+ (�ghbb)

SQCD

X
; (3.4)

consisting of contributions from the vertex correction, the b-quark wave func-

tion renormalization, and the counterterm from the renormalization of the

b-quark Yukawa coupling, respectively. To compute the one-loop Yukawa

counterterm contribution, we note that the Higgs wave function, the vevs

(and hence tan �) and the parameters g, MW and � receive no O(�s) cor-

rections at one-loop. Thus, to leading order in �s, (�ghbb)
SQCD

X
can be easily

obtained from eq. 3.2 and depends only on the b-quark mass counterterm as

follows:

(�ghbb)
SQCD

X
= ghbb

(�mb)
SQCD

mb

: (3.5)

In eq. 3.5, (�mb)
SQCD is the SQCD contribution to the b-quark mass coun-

terterm, which is �xed by de�ning mb to be the pole of the one-loop O(�s)
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b-quark propagator. This is the on-shell renormalization scheme.

We have computed the various contributions to �g
SQCD

hbb
[see eq. 3.4]. The

contribution of the one-loop vertex is given by:

(�ghbb)
SQCD

3

ghbb
=

�s

3�

("
2M2

Z

mb

cos� sin(�+ �)

sin�
(Ib3c

2
b
�Qbs

2
W
c2b) + 2mb + Ybs2b

#

� [mbC11 +M~gs2bC0] (m
2
b
;M2

h
0 ;m2

b
;M2

~g ;M
2
~b1
;M2

~b1
)

+

"
2M2

Z

mb

cos � sin(� + �)

sin�
(Ib3s

2
b
+Qbs

2
W
c2b) + 2mb � Ybs2b

#

� [mbC11 �M~gs2bC0] (m
2
b
;M2

h0
;m2

b
;M2

~g ;M
2
~b2
;M2

~b2
)

+

"
�
M2

Z

mb

cos � sin(� + �)

sin�
(Ib3 � 2Qbs

2
W
)s2b + Ybc2b

#

�
h
2M~gc2bC0(m

2
b
;M2

h0
;m2

b
;M2

~g ;M
2
~b1
;M2

~b2
)
i)

; (3.6)

where cb � cos �~b, c2b � cos 2�~b, sb � sin �~b, etc., and Yb arises in the Higgs

coupling to sbottoms:

Yb � Ab + � cot� : (3.7)

The contribution from the b-quark self-energy and the h0b�b vertex coun-

terterm is given by

(�ghbb)
SQCD

2
+ (�ghbb)

SQCD

X

ghbb
=

�
�s

3�

(
M~g

mb

s2b
h
B0(m

2
b
;M2

~g ;M
2
~b1
)�B0(m

2
b
;M2

~g ;M
2
~b2
)
i

�2m2
b

h
B0

1(m
2
b
;M2

~g ;M
2
~b1
) +B 0

1(m
2
b
;M2

~g ;M
2
~b2
)
i

�2mbM~gs2b
h
B0

0(m
2
b
;M2

~g ;M
2
~b1
)�B0

0(m
2
b
;M2

~g ;M
2
~b2
)
i)

: (3.8)

Our notation for the loop integrals B0, B
0
0, B

0
1, C0 and C11 is de�ned in

the Appendix. We have checked that our results are in agreement with the

calculations of ref. [7].

4 Analytic and numerical results

We now analyze the decoupling behavior of the SQCD corrections to the

h0b�b coupling. We derive approximate analytic expressions for the SQCD

corrections in the limit of large SUSYmass parameters and explore the nature

of the decoupling limit.
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We de�ne our expansion parameters as follows. Since we are interested

in the limit of large SUSY mass parameters, we consider all the soft-SUSY-

breaking mass parameters and the � parameter to be of the same order (col-

lectively denoted by MSUSY ) and much heavier than the electroweak scale.

That is,

MSUSY �ML �MR �M~g � � � Ab �MEW ; (4.1)

where ML and MR are de�ned in eq. 2.8. We give expansions of the SQCD

corrections to the h0b�b coupling in inverse powers of the SUSY mass pa-

rameters, up to order M2
EW

=M2
SUSY

. We consider MZ , Mh0 , mb tan �, and

mb cot� to all be of order MEW . We neglect small contributions of order

m2
b
=M2

SUSY
and mbMEW=M

2
SUSY

that are not enhanced by tan � or cot�.

The expansions of the loop integrals are given in the Appendix. There are

two possible extreme con�gurations of the sbottom mass-squared matrix that

we must separately consider: maximal and near-zero mixing.

Maximal mixing (�~b ' ��=4) between
~bL and ~bR arises when the splitting

between the diagonal elements of the mass-squared matrix is small compared

to the o�-diagonal elements: jM2
L
�M2

R
j � mbjXbj. Because of the tan �

enhancement in Xb, mbXb is of order MEWMSUSY . In this case we consider

jM2
L
�M2

R
j to be of order M2

EW
, so that the mass splitting between the two

sbottoms is small compared to their masses and we must take care to treat

it properly in the expansions. We consider this case in Section 4.1.

Near-zero mixing between ~bL and ~bR arises when the splitting between the

diagonal elements of the mass-squared matrix is large compared to the o�-

diagonal elements, jM2
L
�M2

R
j � mbjXbj. This is the case usually considered

in the literature, because ML and MR depend on two di�erent soft-SUSY-

breaking parameters M ~Q
and M ~D

, respectively, and the b-quark mass in the

o�-diagonal elements is small. In this case the mass splitting between the

two sbottoms will be of the same order as their masses (i.e., jM2
L
�M2

R
j is

of order M2
SUSY

) and this has to be treated properly in the expansions. We

consider this case in Section 4.2.

4.1 Maximal ~bL � ~bR mixing

Maximal mixing in the sbottom sector arises when jM2
L
�M2

R
j � mbjXbj. In

this limit, we can expand the sbottom mass-squared eigenvalues in powers of

the small parameter (M2
L
�M2

R
)=mbXb (which is of order MEW=MSUSY ) as

follows:

M2
~b1;2
'M2

S
��2 ; (4.2)

where we have de�ned

M2
S
= 1

2
(M2

L
+M2

R
) = 1

2
(M2

~b1
+M2

~b2
)

�2 = �
LR
mbjXbj

"
1 +

(M2
L
�M2

R
)2

8m2
b
X2
b

#
: (4.3)
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Here M2
S
is of order M2

SUSY
while �2 is of order MEWMSUSY . Expanding

the expressions for the mixing angle in terms of the same small parameter,

we obtain

cos 2�~b '

�����M
2
L
�M2

R

2mbXb

����� ;
sin 2�~b ' �

LR
�
X

"
1�

(M2
L
�M2

R
)2

8m2
b
X2
b

#
; (4.4)

where �
X
� sgn(Xb). Expanding eqs. 3.6 and 3.8 to order M2

EW
=M2

SUSY
, we

�nd

�SQCD =
�s

3�

(
��M~g

M2
S

(tan � + cot�) f1(R)�
YbM~gM

2
h0

12M4
S

f4(R)

+
�2m2

b
tan2 �

2M4
S

"
cot�

tan �
f4(R) �

M~g

M2
S

 
Yb � 2Ab

cot�

tan�

!
f3(R)

#

+
2

3

M2
Z

M2
S

cos � sin(�+ �)

sin�
Ib3

 
f5(R) +

M~gXb

M2
S

f2(R)

!
+O

 
mbMEW

M2
SUSY

!)
;(4.5)

where R � M~g=MS . The functions fi(R) arise from the expansions of the

loop integrals and are given in the Appendix. They are normalized so that

fi(1) = 1. Note that terms of order (M2
L
�M2

R
)2=(m2

b
X2
b
) cancel exactly in

the leading order of the large MSUSY expansion [eq. 4.5].

The �rst term in eq. 4.5 is zeroth order in MSUSY . That is, if the ratios

between the SUSY parameters are �xed and the SUSY mass scale is taken

arbitrarily heavy, this term remains constant. This non-decoupling behavior

has been pointed out previously in refs. [4, 5]. If the SUSY mass scale is

much larger than MA, then one may de�ne a low-energy e�ective theory by

integrating out the SUSY particles. This low-energy e�ective theory contains

two Higgs doublets, whose couplings to fermions are unrestricted (i.e., each

Higgs doublet couples to both up-type and down-type quarks), characteristic

of the so-called general type-III model [27].

The remaining terms are of order M2
EW

=M2
SUSY

. In contrast to the �rst

term, they depend on Ab (through Xb and Yb). However, the contribution

proportional toAb is not enhanced when tan � (or cot�) is large, and so is less

signi�cant at large tan � than the contribution proportional to �. Neglecting

all terms that are not enhanced by large tan � or cot�, we �nd that �SQCD

is proportional to the product �M~g. Because of this, for large tan � the sign

of �SQCD can be used as a test of the anomaly-mediated SUSY breaking

scenario [28], which predicts a negative M~g [29]. Of course, the sign of �

must be determined from another SUSY process for the sign of M~g to be

extracted.
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4.2 Near-zero ~bL � ~bR mixing

Near-zero mixing in the sbottom sector arises when jM2
L
�M2

R
j � mbjXbj.

This corresponds to taking the di�erence between the physical sbottommasses

to be of the same order as the masses themselves. In this case we write

our results in terms of the physical sbottom masses and expand in powers

of the small parameter mbXb=(M
2
~b1
�M2

~b2
), which we take to be of order

MEW=MSUSY . The mixing angle is then given by eq. 2.12, from which one

easily derives the expansion

cos 2�~b ' 1 �
2m2

b
X2
b

(M2
~b1
�M2

~b2
)2
: (4.6)

Expanding eqs. 3.6 and 3.8 to order M2
EW

=M2
SUSY

, and writing the result

in terms of the physical sbottom masses, we �nd:

�SQCD =
�s

3�

8<: �2�M~g

M2
~b1
�M2

~b2

(tan � + cot�)h1(R1; R2) + 2M2
h0

M~gYb h2(R1; R2)

(M2
~b1
�M2

~b2
)2

+2M2
Z

cos� sin(�+ �)

sin�

24(Ib3 �Qbs
2
W
)

0@f5(R1)

3M2
~b1

�
M~gXb

M2
~b1
�M2

~b2

f1(R1)

M2
~b1

+
2M~gXb h1(R1; R2)

(M2
~b1
�M2

~b2
)2

1A

+Qbs
2
W

0@f5(R2)

3M2
~b2

+
M~gXb

M2
~b1
�M2

~b2

f1(R2)

M2
~b2

�
2M~gXb h1(R1; R2)

(M2
~b1
�M2

~b2
)2

1A35

�
2�2M~gm

2
b
tan2 �

(M2
~b1
�M2

~b2
)2

 
Yb � 2Ab

cot�

tan �

!0@f1(R1)

M2
~b1

+
f1(R2)

M2
~b2

�
4h1(R1; R2)

M2
~b1
�M2

~b2

1A

�
2�2m2

b
tan � cot�

M2
~b1
�M2

~b2

0@f5(R1)

3M2
~b1

�
f5(R2)

3M2
~b2

1A + O

 
mbMEW

M2
SUSY

!)
; (4.7)

where Ri � M~g=M~bi
(i = 1; 2). The functions hi(R1; R2) and f1;5(Ri) arise

from the expansions of the loop integrals and are given in the Appendix.

As in the case of maximal sbottom mixing, the �rst term in eq. 4.7 is

zeroth order in MSUSY . The remaining terms are of order M2
EW

=M2
SUSY

. As

in the previous section, if we neglect all terms that are not enhanced by large

tan � or cot�, we �nd that the dependence on Ab drops out and �SQCD is

again proportional to the product �M~g.

4.3 The approach to the decoupling limit

We �rst examine the �rst term in eq. 4.5 and in eq. 4.7, both of which are of

zeroth order in MSUSY . If we take all SUSY mass parameters large at �xed

12



MA, then �SQCD tends to a nonzero constant; i.e., the SQCD corrections do

not decouple. However, we are interested in the case where MSUSY and MA

are large. In both eqs. 4.5 and 4.7, the terms of zeroth order in MSUSY are

proportional to tan � + cot�. Inserting into this expression the formula for

cot� in the limit of large MA [eq. 2.6], we see that

tan � + cot� = �
2M2

Z

M2
A

tan� cos 2� +O

 
M4

EW

M4
A

!
: (4.8)

Thus, the �rst term in eqs. 4.5 and 4.7 is of order M2
EW

tan �=M2
A
, and

therefore decouples in the limit of large MA. However, the approach to

decoupling is delayed in the large tan � regime. Speci�cally, for values of

M2
A
�M2

Z
tan �, we see that tan �+cot� � O(1). For example, if tan � � 50,

then even for values of MA � 1 TeV, decoupling has not yet set in.

Other terms in eqs. 4.5 and 4.7 also exhibit delayed decoupling. In par-

ticular, eq. 4.8 implies that

Yb = Xb +O

 
MSUSYM

2
EW

tan �

M2
A

!
; (4.9)

so that Yb is also enhanced at large tan �. Hence, all terms in eqs. 4.5 and

4.7 that are proportional to either Xb or Yb are of order M
2
EW

tan �=M2
SUSY

.

Again, if tan � � 50 and MSUSY � 1 TeV, decoupling has not yet set in.

The remaining terms in eqs. 4.5 and 4.7 exhibit the expected decoupling

in the usual sense (with no delay). In particular, we may set � = � � �=2 in

the decoupling limit to obtain

cos � sin(� + �)

sin�
= cos 2� +O

 
M2

EW

M2
A

!
; (4.10)

which exhibits no tan � enhancement. All remaining factors of tan � are

multiplied by the appropriate power of mb, and since mb tan� � MEW , no

delayed decoupling results from these terms.

We have thus shown analytically that the one-loop SQCD corrections to

the h0b�b coupling decouple in the limit of large MSUSY and large MA. The

decoupling takes the generic form:

�SQCD � C1

M2
EW

M2
A

+ C2

M2
EW

M2
SUSY

: (4.11)

In general C1 approaches a non-zero constant as MSUSY !1, while C2 ap-

proaches a (di�erent) non-zero constant as MA !1. Thus, the decoupling

limit requires both MA and MSUSY to become simultaneously large (as com-

pared to MEW ). However, we will demonstrate that in some cases the SQCD

radiative corrections vanish in the limit where some SUSY particle masses

are large, independent of the value of MA.
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Figure 2: �SQCD as a function of particle mass for tan � = 50 and MSUSY =

ML = MR = MS = M~g = � = Ab. The curves (a) are plotted vs. MSUSY ,

with MA = 3000 GeV; whereas the curves (b) are plotted vs. MA, with

MSUSY = 3000 GeV. Solid lines are based on the exact one-loop formula and

dashed lines are based on the analytic approximation of eq. 4.5.

This decoupling is shown numerically2 in �gs. 2 and 3. In �g. 2, we plot

the exact one-loop expression for �SQCD (solid lines) and the expansion of

eq. 4.5 (dashed lines) for tan � = 50 and MSUSY = ML = MR = MS =

M~g = � = Ab. The lines labeled (a) show �SQCD as a function of MSUSY .

We have �xed MA very large, MA = 3000 GeV, in order to eliminate the

contribution to �SQCD that decouples at large MA. We use the exact tree-

level formula for cot� as a function of MA and tan�. The lines labeled (b)

show �SQCD as a function of MA, where now we have �xed MSUSY to be

very large, MSUSY = 3000 GeV, in order to examine only the contribution

to �SQCD that does not decouple at large MSUSY . We note that for very

large MSUSY and MA = 1 TeV, �SQCD is of order �1% for tan� = 50. We

have plotted our results for �M~g positive. In the approximation of neglecting

terms not enhanced by large tan � or cot�, changing the sign of �M~g simply

ips the sign of �SQCD.

In �g. 3 we again plot the exact one-loop expression for �SQCD (solid

lines) and the expansion of eq. 4.5 (dashed lines) for all the SUSY mass

parameters equal, MSUSY = ML = MR = MS = M~g = � = Ab, and three

values of tan�. 3 Note the change in the vertical scale for the plots with

di�erent values of tan�. We show the dependence of �SQCD on MSUSY

2
In our numerical analysis we take the b-quark pole-mass to be 4:75 GeV and �s =

0:119. Because of the experimental constraints on the sbottom masses, we consider only

regions of parameter space in which both sbottoms are heavier than 100 GeV.
3
Although we have chosen ML = MR for simplicity, our results are not particularly

sensitive to this choice as long as jM
2

L
�M

2

R
j � mbjXbj (c.f. the remarks below eq. 4.5).
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Figure 3: �SQCD for MSUSY = ML = MR = MS = M~g = � = Ab, with

tan � = 8 (top panels), 30 (middle panels), and 50 (bottom panels). The

solid lines are based on the exact one-loop formula and the dashed lines are

based on the analytic approximation of eq. 4.5. In the left-hand panels we

plot �SQCD as a function of MSUSY for MA = 200, 300, and 500 GeV. In

the right-hand panels we plot �SQCD as a function of MA for MSUSY = 200,

300, and 500 GeV. For tan � = 50, the value of MSUSY = 200 GeV yields a

negative mass-squared for the lighter sbottom, so this value is not shown in

the bottom right panel.
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(left-hand panels) and MA (right-hand panels). Clearly, in the limit of large

MSUSY , �SQCD tends to a non-vanishing constant, and this constant tends

to zero in the large MA limit. Similarly, in the limit of large MA, �SQCD

tends to a non-vanishing constant, and this constant tends to zero in the

large MSUSY limit.

Notice that from the numerical comparison between the exact and ana-

lytic formulae in �g. 3, we can conclude that our expansion is a good ap-

proximation for large enough SUSY mass parameters. In particular, it is

reasonably accurate for MSUSY larger than 300 GeV. Also, it is clear that as

tan � grows, not only does �SQCD increase in magnitude, but the agreement

between the exact and analytic formulae becomes worse at low MSUSY . This

is due to the fact that the splitting between the squared masses of the two

sbottoms in the maximal mixing case is proportional to mb tan �, which we

have taken to be of order MEW in our expansion. As tan � increases, the

mass of the lighter sbottom decreases, and the higher order terms that we

have neglected in our expansion become more important.

All numerical results presented so far correspond to �M~g > 0. In the case

of �M~g < 0, the qualitative features of j�SQCDj remain unchanged. From

the analytic formulae derived in this section, one can see that at large tan �

the dominant e�ect of changing the sign of �M~g is to change the overall sign

of �SQCD. We can illustrate this point in the simple limiting case in which

all SUSY mass parameters and MA are equal. Simplifying eq. 4.5 in this

limit, we end up with a simple formula for the case of �M~g > 0:

�SQCD =
�s

3�

(
M2

Z

3M2
SUSY

cos 2� (7 tan � � 2) +
M2

h
0

12M2
SUSY

(tan � � 1)

+
m2
b
tan2 �

2M2
SUSY

(tan � � 4) +O

 
mbMEW

M2
SUSY

!)
; (4.12)

where MSUSY = MS = M~g = � = Ab = MA. To obtain the result for

�M~g < 0, one replaces tan � with � tan � in eq. 4.12. The formula of eq. 4.12

is plotted in �g. 4 for three values of tan � and both signs of � (taking M~g to

be positive, by convention). Clearly, �SQCD decouples like (M2
EW

=M2
SUSY

),

but this decoupling is delayed at large tan �. For example, even at MSUSY =

1 TeV, j�SQCDj ' 1% for tan � � 30. Note that as expected, changing the

sign of � simply changes the sign of the dominant contribution to �SQCD.

In the remainder of our analysis, we will display results only for � > 0.

Next, we consider the decoupling of the SQCD corrections to the h0b�b

coupling as individual SUSY particles become heavy compared to the com-

mon SUSY mass scale. We examine three cases: large MS with maximal

sbottom mixing, large M~g with maximal sbottom mixing, and one heavy

sbottom state with near-zero sbottom mixing.

We �rst consider the case of large MS with maximal sbottom mixing,

with MS � M~g � � � Ab � MEW . If MS is taken large while the rest of

the SUSY mass parameters remain �xed, then we may expand the functions
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Figure 4: �SQCD as a function of MSUSY for MSUSY = ML = MR = MS =

M~g = j�j = Ab = MA and tan� = 8, 30, 50. Both positive and negative �

cases are shown. The solid lines are based on the exact one-loop formula and

the dashed lines are based on the analytic approximation of eq. 4.12.

fi(R) in eq. 4.5 for MS �M~g, or R� 1. The result is:

�SQCD =
�s

3�

(
�2�M~g

M2
S

(tan � + cot�) +
M2

Z

M2
S

cos � sin(� + �)

sin�
Ib3 +O

 
M4

M4
S

!)
;

(4.13)

where M is one of the lighter SUSY particle masses. Note that in this limit,

the SQCD corrections decouple like M2=M2
S
even for light MA. Thus it is

only in the case of large M~g and �, of the same order as MS , that large MA

is required for decoupling. In �g. 5 we plot the exact one-loop expression

for �SQCD and the expansions of eqs. 4.5 and 4.13 as a function of MS, for

�xed M~g = � = Ab = MA = 200 GeV and three di�erent values of tan �.

This �gure shows the decoupling of �SQCD with MS as discussed above.

Similarly we examine the case of a very heavy gluino compared to the

rest of the SUSY spectrum. We still focus on the case of maximal sbottom

mixing. Expanding the functions fi(R) in eq. 4.5 for M~g � MS, or R � 1,

we see that in this case the SQCD corrections decouple with the gluino mass

like M=M~g , where again M is one of the other light SUSY masses:

�SQCD =
�s

3�

(
2�

M~g

(tan� + cot�)

"
1� log

 
M2

~g

M2
S

!#
�

Yb

3M~g

M2
h0

M2
S

(4.14)

+
2Xb

M~g

M2
Z

M2
S

cos� sin(�+ �)

sin�
Ib3 �

�2m2
b
tan2 �

M~gM
4
S

 
Yb � 2Ab

cot�

tan �

!
+O

 
M2

M2
~g

!)
:

Note that the decoupling of the SQCD corrections at largeM~g (with all other

SUSY mass parameters held �xed) is very slow: �SQCD falls o� only as one

power ofM~g. This is due to the factor of M~g in the numerator of eqs. 3.6 and

3.8, which arises from the gluino propagator. �SQCD is also enhanced by the
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Figure 5: �SQCD as a function of MS (assuming ML = MR = MS) for

M~g = � = Ab = MA = 200 GeV and tan � = 8; 30; 50 (top to bottom). Solid

lines are based on the exact one-loop expression, dashed lines are based on

the analytic expansion of eq. 4.5, and dotted lines are based on the large MS

expansion of eq. 4.13.
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factor log(M2
~g =M

2
S
). We again see the phenomenon of delayed decoupling at

large tan � due to the terms in eq. 4.14 proportional to either Xb or Yb.

In �g. 6 we plot the exact one-loop expression for �SQCD and the ex-

pansions of eqs. 4.5 and 4.14 as a function of M~g, for MS = � = Ab =

MA = 300 GeV and three di�erent values of tan�. This �gure shows the

slow decoupling of �SQCD with M~g. For example, for M~g = 500 GeV and

tan � = 30, �SQCD ' �6% for MS = � = Ab = MA = 300 GeV. If the

latter masses are reduced to 200 GeV, one �nds �SQCD ' �13%, which is a

signi�cant correction. Fig. 6 also illustrates the validity of the large gluino

mass expansion. This expansion is particularly poor for large values of tan �

out to a very large gluino mass of about 2000 GeV.

Finally we study the case in which one of the sbottoms becomes heavy

while the other sbottom mass and the rest of the SUSY mass parameters are

�xed. We choose MR � ML � M~g � � � Ab � MEW , so that M~b2
� M~b1

.

This is necessarily the case of near-zero sbottom mixing. Expanding eq. 4.7

in inverse powers of M~b2
, we �nd:

�SQCD =
�s

3�

8<:23 M
2
Z

M2
~b1

cos � sin(� + �)

sin�
(Ib3 �Qbs

2
W
)f5(R1)

+
2�M~g

M2
~b2

(tan � + cot�)

24h(R1) + log

0@M2
~g

M2
~b2

1A35
+

M2
Z

M2
~b2

cos� sin(�+ �)

sin�

24(Ib3 �Qbs
2
W
)
2M~gXb

M2
~b1

f1(R1) +Qbs
2
W

35
+

2

3

�2m2
b
tan � cot�

M2
~b1
M2

~b2

f5(R1) +O

0@M4

M4
~b2

1A9=; ; (4.15)

where again M is one of the other light SUSY masses and the function h(R1)

is given in the Appendix. Note that the �rst term does not decouple as

M~b2
is taken large. This behavior is independent of the value of MA (and

therefore holds even if MA ! 1). However, this �rst term is not enhanced

by large tan � and is numerically negligible as can be seen in �g. 7. The

terms that are enhanced by large tan � decouple like M2=M2
~b2
. In �g. 7 we

plot the exact one-loop expression for �SQCD and the expansions of eqs. 4.7

and 4.15, as a function of M~b2
, for M~b1

= M~g = � = Ab = MA = 200

GeV and three di�erent values of tan �. Clearly, in order for �SQCD to be

large in the case of near-zero sbottom mixing, both of the sbottoms must

be reasonably light. Note however that, due to the enhancement in tan �,

the 1=M2
~b2

suppression is not so small. As an example, for tan � = 50,

M~b1
= M~g = � = Ab =MA = 200 GeV and M~b2

= 500 GeV [1000 GeV], one

obtains �SQCD ' �10% [�5%].

The various cases examined in this section can be summarized by spec-

ifying the behavior of C1 and C2 of eq. 4.11 on the model parameters. In

Table 1, four cases are shown. In all cases, MSUSY is identi�ed with the
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Figure 7: �SQCD as a function of M~b2
, with M~b1

= M~g = � = Ab = MA =

200 GeV and tan � = 8; 30; 50. Solid lines are based on the exact one-

loop formula, dashed lines based on are the analytic expansion for near-zero

sbottom mixing of eq. 4.7, and dotted lines are based on the expansion for

large M~b2
of eq. 4.15.

largest supersymmetry-breaking mass, while M refers to a possible interme-

diate supersymmetricmass scale (withMEW �M �MSUSY ). The presence

of a factor of tan � (unless multiplied by M=MSUSY ) indicates delayed de-

coupling. In the case of M~g = MSUSY , C2 � (MSUSY =M) tan � implies a

delayed decoupling that vanishes only as a single power of 1=MSUSY . Fi-

nally, in the case of large M~b2
, C2 � M2

SUSY
=M2 implies no decoupling as

MSUSY !1 with M held �xed. This is not a violation of the usual decou-

pling theorem [2,3], since in the latter case, only part of the supersymmetric

spectrum has been removed from the low-energy e�ective theory. Decoupling

is recovered in the limit of M !1, as expected.

Case eb mixing C1 C2

MS 'M~g =MSUSY maximal tan � tan�

MS = MSUSY �M maximal (M2=M2
SUSY

) tan � 1

M~g = MSUSY �M maximal (M=MSUSY ) tan � (MSUSY =M) tan �

M~b2
= MSUSY �M near-zero (M2=M2

SUSY
) tan � M2

SUSY
=M2

Table 1: Approach to decoupling of the one-loop O(�s) radia-

tive corrections to the h0b�b vertex: �SQCD � C1(M
2
EW

=M2
A
) +

C2(M
2
EW

=M2
SUSY

). See text for further discussion.
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5 Conclusions

In this paper we have studied the one loop SQCD corrections to the h0b�b cou-

pling in the limit of large SUSY masses. In order to understand analytically

the behavior of the corrections in this limit, we have performed expansions

for the SUSY mass parameters large compared to the electroweak scale. We

have shown that for the SUSY mass parameters and MA large and all of the

same order, the SQCD corrections decouple like the inverse square of these

mass parameters. However, if the mass parameters are not all of the same

size, then this behavior can be modi�ed. If MA is light, then the SQCD

corrections to the h0b�b coupling generically do not decouple in the limit of

large SUSY mass parameters. In this case, the low-energy theory at the elec-

troweak scale contains two full Higgs doublets with Higgs-fermion couplings

of the general type-III model.

We have also examined three cases in which there is a hierarchy among

the SUSY mass parameters. In the case of maximal sbottom mixing with

MS large and the other SUSY mass parameters and MA of order a common

mass scale M (chosen such that MEW � M � MS), the SQCD corrections

decouple like M2=M2
S
. Second, we examined the case of a large gluino mass

with the other SUSY mass parameters of order a common mass scale M

(chosen such that MEW � M � M~g). In this case we found that the

SQCD corrections decouple more slowly, like (M=M~g) log(M
2
~g =M

2
S
). Finally,

we examined the case in which one sbottom is much heavier than the other

SUSY mass parameters, which are �xed at a scaleM . In this case the mixing

angle in the sbottom sector is near zero. We found that the piece of the SQCD

corrections that is enhanced at large tan � decouples like M2=M2
~b2
. There is

also a piece of the SQCD corrections that does not decouple as M~b2
is taken

large, but it is not enhanced by tan � and is numerically negligible compared

to the decoupling piece, up to a very high value of the heavier sbottom mass.

The decoupling behavior of the SQCD corrections to the h0b�b coupling im-

plies that distinguishing the lightest MSSM Higgs boson from the SM Higgs

boson will be very di�cult if A0 and the SUSY spectrum are heavy, even

after one-loop SUSY corrections are taken into account. However, because

of the enhancement at large tan�, the onset of decoupling is delayed, and

the corrections can still be at the percent level for tan � � 50 and all SUSY

mass parameters and MA of order 1 TeV. If one or both of the sbottoms, the

gluino, and/or A0 lie below the TeV scale, then the SQCD corrections will

be larger still. The decoupling limit provides a challenge for Higgs searches

at future colliders. Even if the light CP-even Higgs boson is found, the di-

rect discovery of supersymmetric particles may be essential for unraveling

the origin of electroweak symmetry breaking.
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Appendix

A Expansions of loop functions

In this Appendix we de�ne our notation for the two- and three-point integrals

that appear in eqs. 3.6 and 3.8 and give formulae for their expansions in

powers of the SUSY mass parameters.

We follow the de�nitions and conventions of [30]. The two-point integrals

are given by:

�4�D
Z

dDk

(2�)D
f1; k�g

[k2 �m2
1][(k + q)2 �m2

2]
=

i

16�2
fB0; q

�B1g (q
2;m2

1;m
2
2) :

(A.1)

The derivatives of the two-point functions are de�ned as follows:

B0

0;1(p
2;m2

1;m
2
2) =

@

@q2
B0;1(q

2;m2
1;m

2
2)

�����
q2=p2

: (A.2)

Finally, the three-point integrals are given by:

�4�D
Z

dDk

(2�)D
f1; k�g

[k2 �m2
1][(k + p1)2 �m2

2][(k + p1 + p2)2 �m2
3]

=
i

16�2
fC0; p

�

1C11 + p�2C12g (p
2
1; p

2
2; p

2;m2
1;m

2
2;m

2
3) ; (A.3)

where p = �p1 � p2.

We now give the large MSUSY expansions of the loop integrals.

22



A.1 Maximal ~bL � ~bR mixing

The loop integrals are expanded as follows, where M2
S
and �2 are de�ned in

eq. 4.3.

C0(m
2
b
;M2

h0
;m2

b
;M2

~g ;M
2
~b1
;M2

~b1
)

' �
1

2M2
S

f1(R) +
�2

3M4
S

f2(R) �
�4

4M6
S

f3(R) �
M2

h
0

24M4
S

f4(R)

C0(m
2
b
;M2

h
0 ;m2

b
;M2

~g ;M
2
~b2
;M2

~b2
)

' �
1

2M2
S

f1(R)�
�2

3M4
S

f2(R)�
�4

4M6
S

f3(R) �
M2

h0

24M4
S

f4(R)

C0(m
2
b
;M2

h0
;m2

b
;M2

~g ;M
2
~b1
;M2

~b2
)

' �
1

2M2
S

f1(R)�
�4

12M6
S

f3(R) �
M2

h
0

24M4
S

f4(R)

C11(m
2
b
;M2

h
0 ;m2

b
;M2

~g ;M
2
~b1
;M2

~b1
)

'
1

3M2
S

f5(R) �
�2

4M4
S

f4(R) +
�4

5M6
S

f6(R) +
M2

h0

30M4
S

f7(R)

C11(m
2
b
;M2

h0
;m2

b
;M2

~g ;M
2
~b2
;M2

~b2
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'
1

3M2
S

f5(R) +
�2

4M4
S

f4(R) +
�4

5M6
S
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M2

h
0
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f7(R)
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2
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2
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M2
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B0
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2
b
;M2
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2
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)�B0
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2
b
;M2
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2
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) ' �
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6M4
S

f8(R)

B0

1(m
2
b
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) +B0
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2
b
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~g ;M
2
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6M2
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15M6
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f9(R): (A.4)

The functions fi(R) are given in terms of the ratio R �M~g=MS :

f1(R) =
2

(1�R2)2

h
1�R2 +R2 logR2

i
f2(R) =

3

(1�R2)3

h
1�R4 + 2R2 logR2

i
f3(R) =

4

(1�R2)4

h
1 + 3

2
R2
� 3R4 + 1

2
R6 + 3R2 logR2

i
f4(R) =

4

(1�R2)4

h
1

2
� 3R2 + 3

2
R4 +R6

� 3R4 logR2
i

f5(R) =
3

(1�R2)3

h
1

2
� 2R2 + 3

2
R4
�R4 logR2

i
f6(R) =

5

(1�R2)5

h
1

2
� 4R2 + 4R6

�
1

2
R8
� 6R4 logR2

i
f7(R) =

5

(1�R2)5

h
1

3
� 2R2 + 6R4

� 10

3
R6
�R8 + 4R6 logR2

i
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f8(R) =
12

(1�R2)4

h
1

2
+ 2R2

�
5

2
R4 + 2R2 logR2 +R4 logR2

i
f9(R) =

5

(1�R2)6

h
1� 12R2

� 36R4 + 44R6 + 3R8

�24R6 logR2
� 36R4 logR2

i
: (A.5)

Note that in the special case M~g = MS , R = 1 and fi(1) = 1.

A.2 Near-zero ~bL � ~bR mixing

The loop integrals are expanded as follows:

C0(m
2
b
;M2
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b
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2
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~b1
) ' �

1

2M2
~b1

f1(R1)�
M2

h
0

24M4
~b1

f4(R1)

C0(m
2
b
;M2

h0
;m2

b
;M2

~g ;M
2
~b2
;M2

~b2
) ' �

1

2M2
~b2

f1(R2)�
M2

h0

24M4
~b2

f4(R2)

C0(m
2
b
;M2

h0
;m2

b
;M2

~g ;M
2
~b1
;M2

~b2
) ' �

h1(R1; R2)

(M2
~b1
�M2

~b2
)
+
M2

h0
h2(R1; R2)

(M2
~b1
�M2

~b2
)2

C11(m
2
b
;M2

h0
;m2

b
;M2

~g ;M
2
~b1
;M2

~b1
) '

1

3M2
~b1

f5(R1) +
M2

h0

30M4
~b1

f7(R1)

C11(m
2
b
;M2

h0
;m2

b
;M2

~g ;M
2
~b2
;M2

~b2
) '

1

3M2
~b2

f5(R2) +
M2

h0

30M4
~b2

f7(R1)

B0(m
2
b
;M2

~g ;M
2
~b1
)�B0(m

2
b
;M2

~g ;M
2
~b2
) ' �h1(R1; R2)

B0

0(m
2
b
;M2

~g ;M
2
~b1
)�B0

0(m
2
b
;M2

~g ;M
2
~b2
) '

1

6M2
~b1

f2(R1)�
1

6M2
~b2

f2(R2)

B0

1(m
2
b
;M2

~g ;M
2
~b1
) +B0

1(m
2
b
;M2

~g ;M
2
~b2
) ' �

1

12M2
~b1

f4(R1)�
1

12M2
~b2

f4(R2); (A.6)

where Ri � M~g=M~bi
(i = 1; 2). The functions fi(R) were given in eq. A.5.

The functions h1(R1; R2) and h2(R1; R2) are de�ned as follows:

h1(R1; R2) = h(R1)� h(R2); with h(R) = �
logR2

1�R2
;

h2(R1; R2) = 1 +
R2
1 +R2

2 � 2R2
1R

2
2

2(1 �R2
1)(1�R2

2)

�
1
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1 �R2

2)

"
logR2

1

(1�R2
1)
2
(R2

1 +R2
2 � 2R4

1)

�
logR2

2

(1�R2
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#
: (A.7)
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The functions h and h2 have the following properties:

h(1) = 1;

h2(R1; R2) = h2(R2; R1);

h2(1; R2) =
1

(1 �R2
2)
2

h
5

4
�R2

2 �
1

4
R4
2 +

�
1

2
+R2

2

�
logR2

2

i
: (A.8)
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